Enhanced C#
Language of your choice: library documentation

Documentation moved to ecsharp.net

GitHub doesn't support HTTP redirects, so you'll be redirected in 3 seconds.

 All Classes Namespaces Functions Variables Enumerations Enumerator Properties Events Pages
List of all members
Loyc.Math.IRing< T > Interface Template Reference

This defines a Ring with the operations +,* More...


Source file:
Inheritance diagram for Loyc.Math.IRing< T >:
Loyc.Math.IAdditionGroup< T > Loyc.Math.IMultiply< T > Loyc.Math.IZeroProvider< T > Loyc.Math.IOneProvider< T > Loyc.Math.IField< T > Loyc.Math.IComplexMath< T > Loyc.Math.IMath< T > Loyc.Math.ISignedMath< T > Loyc.Math.IUIntMath< T > Loyc.Math.IIntMath< T > Loyc.Math.IRationalMath< T > Loyc.Math.MathU Loyc.Math.MathU16 Loyc.Math.MathU8 Loyc.Math.MathUL Loyc.Math.MathI Loyc.Math.MathI16 Loyc.Math.MathI8 Loyc.Math.MathL Loyc.Math.IFloatMath< T > Loyc.Math.MathF16 Loyc.Math.MathF23 Loyc.Math.MathF8 Loyc.Math.MathFL16 Loyc.Math.MathFL32

Remarks

This defines a Ring with the operations +,*

Axioms that have to be satisified by the operations: The group axioms for + Associativity of *: a * (b*c) = (a*b) * c Neutral element of *: Multiply(One,a)==a for all a in T Distributivity: a * (b+c) = (a*b) + (a*c) (a+b) * c = (a*c) + (b*c)

Additional Inherited Members

- Properties inherited from Loyc.Math.IZeroProvider< T >
Zero [get]
 Returns the "zero" or additive identity of this type. More...
 
- Properties inherited from Loyc.Math.IOneProvider< T >
One [get]
 Returns the "one" or identity value of this type. More...
 
- Public Member Functions inherited from Loyc.Math.IAdditionGroup< T >
Add (T a, T b)
 
Add (T a, T b, T c)
 
Sub (T a, T b)
 
- Public Member Functions inherited from Loyc.Math.IMultiply< T >
Mul (T a, T b)